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F E AT U R E
FINITE ELEMENT ANALYSIS

A
nalysis work is rarely done because
we have spare time or are just curi-
ous about the mechanical behavior
of a part or system. It’s typically per-

formed because we are worried that the
design might fail in a costly or dangerous
manner. Depending on the potential fail-
ure mode our anxiety might not be too
high, but given today’s demanding OEMs
and litigious public, the task could involve
high drama with your name written all
over it.

If you’ve done analysis, you’re com-
fortable with the concepts involved in sta-
tic stress analysis; you define the loading
and boundary conditions, and identify
success with a model bathed in soothing
tones of gray and blue with nary a red re-
gion to be seen. However, in the back of
your mind you might wonder about that
large vibrating motor or the plant ma-
chinery that hums at a constant 12.5Hz.
Alternatively, maybe you have an elec-
tronics enclosure that is to be mounted on

the side of a building in an earthquake-
prone region and your boss is question-
ing your bracket design. Whatever the
case, you have the static world under con-
trol. What about the rest?

In this series of articles, we’ll briefly re-
view dynamic analysis fundamentals and
see how they can easily be applied to
make sure your design remains strong and

rock solid in the face of dynamic events,
whether simple vibrations, earthquakes,
or even rocket launches.

KEEPING IT SIMPLE
Static stress analysis is the proverbial
“walk-in-the-park” for most people do-
ing analysis work. It feels straightforward:
we apply a fixed load and examine the re-
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Figure 1: First vibration mode shape for an NCAA aluminum baseball bat is shown here.
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sulting static behavior (generally linear,
given linear material behavior). We get
back some nice clean stresses and deflec-
tions that hopefully match our intuition
for how our design should behave. While
there might be a few hiccups along the
way, the end result usually appears logical
to our mechanical minds.

The dynamic behavior of a structure
can also be viewed in the same light if we
just shift our perspective a bit and think in
terms of how our structure should natu-
rally deform during a dynamic event.
Whenever a structure is hit or given some
sort of time-varying load (transient or
steady-state), it will respond to this load
with a very characteristic behavior. If the
load is not incredibly massive and the
structure doesn’t blow up or plastically
deform as a result, then the dynamic re-
sponse of your structure will most likely
be linear. That is to say, if the load is re-
moved and the structure is given a chance
to calm down, then it will return to its un-
deformed state. This is the same concept to
use in linear static stress analysis: when
the load is removed the stress in the struc-
ture goes back to zero.

What exactly do we mean by character-
istic dynamic behavior? All structures have
natural or characteristic modes of vibra-
tion. The sound or note from a guitar string
is all about its natural frequency of vibra-
tion. When a guitar string is plucked it will

vibrate at a certain note or tone. This note
is at the string’s characteristic frequency.

Another example is aluminum baseball
bats. The best aluminum baseball bats are
designed with characteristic vibrations
that attempt to limit the sting that occurs
when you hit a ball outside the sweet spot
on the bat. Each frequency creates a phys-
ical deformation or shape, and the total
dynamic response of the bat is a combi-
nation of all its characteristic mode shapes

(see Figures 1 and 2).
In finite element analysis (FEA), these

natural frequencies are called eigenvalues
and their shapes are noted as eigenvec-
tors or eigenmodes. This nomenclature is
rooted in German and the word eigen de-
notes “characteristic” or “peculiar to” and
came into common use with mid-19th cen-
tury mathematicians. With dynamic analy-
ses, you’ll also see the terms normal
modes and normal modes analysis. The
use of the word normal prior to mode is
just another way to say natural, charac-
teristic, or eigen. When describing mode
shapes, our preference is to just say normal
modes since they represent the inherent
natural response of the structure.

A BEAM AS ONE EXAMPLE
If we picture a simply supported beam
(fixed at one end), its natural mode shapes
are determined by its geometry while its
frequency of motion is fixed by its stiff-
ness and density. Got all of that? Take a
look at the graphic of our beam for its first
three modes (see Figures 3 and 4). The first
three modes of the beam are well-defined
but come in pairs to cover all permissible
ranges of motion for that beam. In 3D, the
first mode can oscillate within a 360-de-
gree envelope around its longitudinal axis.
Numerically, the eigen solution process
just gives us the two orthogonal modes,
but it implies the full 360-degree envelope.

All structures have a nearly infinite
number of permissible shapes or eigen-
values/eigenmodes. Fortunately, only the

Figure 2: Second vibration mode shape is shown here for an NCAA aluminum baseball bat.

Figure 3: Undisturbed simple beam,plus two of the first vibration mode shapes (two directions of motion).
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lower frequencies dominate the response
of the structure so we can typically ignore
the higher frequencies. A rule of thumb is
that the first three modes capture the ma-
jority of the response of the structure and
therefore one can safely ignore the higher
frequencies. (The reasoning for this state-
ment will be given in Part II of this series).

The frequency of these modes or their
eigenvalues is dependent upon the stiff-
ness and the density of the beam. The fre-
quency equation for structures can thus
be written as:

! = K / m

where K is the stiffness of the structure
and m is the mass. This wonderfully sim-
ple equation represents a great deal of in-
formation about the system. The classic
way to graphically describe this equation
is with a mass suspended by a spring,
where the mass block can only move up
and down or has one degree of freedom
(DOF) in FEA parlance. The eigenmode
of this system is up and down.

PAPERMILL DESIGN EXAMPLE
In commercially interesting structures, the
same equation holds. The eigenvalue of
the structure is still determined by

! = K / m

For example, consider a forming board
used within a paper mill. The structure is
10 meters long and made of stainless steel.
The paper mill has an operating frequen-
cy of around 9Hz. If the structure’s nat-
ural frequency is near this operating fre-
quency, it will quickly resonate and tear
itself apart. More importantly, it will also
take the multi-million dollar paper mill
along with it (see Figures 5 and 6).

The parameters of the original design
placed the first mode at 8.4Hz, which
would have been a disaster. The forming
board is manufactured from 9.5mm-thick
stainless-steel plates, so our first design
inclination was to simply increase the
thickness of the plates. We pursued this
approach for several days but as we in-
creased the thickness, the mass of the
structure also increased almost in lock-
step with the stiffness (see above equa-
tion). At the end of all this head banging,
we got a marginal improvement (~11Hz
resonance) with 25mm-thick plates, but
it was going to cost a fortune to manu-
facture.

At this point we stepped back from
our rush to find a solution and thought
about how stiffness is developed in long
slender structures. We realized that we
had very little shear transfer between the
top and bottom surfaces of the forming
board. This insight led us to add diagonal
steel rods that would connect the top and
bottom planes and allowed us to keep

the thickness of the plates at 9.5mm. The
new design tested out on the computer
with a first mode frequency of 13Hz. With
the eigenvalue of the forming board now
significantly higher than the operating
frequency of the mill, resonance is im-
possible and the system is dynamically
stable. Additionally, the thinner plates
(9.5mm instead of 25mm) meant it was



more than half the cost of the first, mar-
ginal redesign.

DYNAMIC LOAD CONSIDERATIONS
When a structure is loaded in a transient
or time-varying fashion (e.g., when an
electric motor creates a constant, sinu-
soidally varying load), if the eigenvalue
of the structure is lower or higher than
the excitation frequency, the structure will
just behave as if the load was applied sta-
tically. Let us say that we have this struc-
ture with an eigenvalue at 10Hz and it is
whacked by a transient (e.g., half sine-
wave with frequency of 10Hz), we would
expect the structure to vibrate subsequent
to the hit and then gradually return to its
static zero-stress condition.

However, if the structure's dynamic
load is time-varying (e.g., sine wave at
10Hz), the structure will resonate. If little
damping is present (think metal or stiff
plastic structures), then we may see the
classic harmonic resonance that caused
the collapse of the Tacoma Narrows
Bridge in 1940. What kills structures is
resonance, and the worst kind of reso-
nance occurs when the structure sees the
excitation load over and over again. The
most effective way to eliminate this wor-
ry is to design your structure to have low-
er or higher natural frequencies than its
operational frequency; this goal is the
dominant reason for performing an eigen
analysis.

THE FINALMATH
In our prior discussion we haven’t men-
tioned anything about the magnitude of
an eigenmode. That is to say, we have dis-
cussed its frequency and its shape but left
out any description of its magnitude. In
eigen analysis (normal mode analysis) no
load is applied to the structure. Without a
load (e.g., a force or pressure), a predic-
tion of the actual eigenmode is impossi-

ble. The extraction of the eigenmode (the
shape of the permissible deformation
mode) involves a fancy piece of math that
is commonly available in a multitude of
textbooks. The core thought is that we are
solving the dynamic equation:

{f(t)} = [m]{ x’’(t)} + [C] {x’(t)} + [K] {x(t)}

If damping [C] is ignored (a good as-
sumption for a lot of designs) and the ap-
plied force f(t) is set to 0.0, the equation
reduces to this more manageable formula:

[m]{ x’’(t)} + [K] {x(t)} = 0

This is the key equation for eigen analysis
and states that only the mass and the stiff-
ness of the structure control its natural
modes.

To solve this equation see your favorite
math handbook. The gist of the discus-
sion is that the eigenvalue of the structure
boils down into this elegant formula:

! = K / m

And since no forces are used in the
calculation of the eigenvalue, its associat-
ed eigenmode is dimensionless. Your FEA
program then scales the eigenmode such
that the maximum displacement within
each mode shape is near 1.0 or some rela-
tive value tied to the mass of the struc-
ture. When these eigenmodes are dis-
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Figure 5:Mode 1 of vibrating paper-mill forming board

Figure 4: Second and third vibration modal-shape pairs for a simple supported beam.



played within an FEA program, we see an
imaginary magnitude; this visual can be

problematic for many initiates who are
first venturing into the eigen world of dy-

namic analysis, but we will discuss the
implications in Part II of this series.

MODE ANALYSIS ESSENTIAL CHECKLIST
Determine what type of loading you may
have on your structure and whether or
not that loading might set up a resonant
condition. Try to determine your loading
frequencies and ensure that they fall out-
side of the eigenvalues of your structure.

Run an eigen analysis and look at the
first three normal mode frequencies. See if
they fall within your danger zone.

If the normal mode frequencies are out-
side your loading frequencies then stop.
You are done and all is good.

If your normal mode frequencies are
within your range of interest and you can’t
redesign around them, then stay tuned for
our future articles. We will show that
maybe it isn’t that bad after all. !

George Laird, Ph.D., P.E. is a mechanical engi-
neer with PredictiveEngineering.com and can be
reached at FEA@PredictiveEngineering.com. Send
your comments about this article to DE-Edi-
tors@deskeng.com.
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Figure 6:Mode 2 of vibrating paper-mill forming board
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