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1. SUMMARY 

1.1 SUMMARY OF BUCKLING MECHANISMS 

 It is driven by compressive forces. 

 It is a geometric nonlinear behavior.  As load is applied, the structure deforms and the load path 
changes in response to this change in geometry.  

 Perfect structures that are loaded with perfectly aligned loads will not buckle in the perfect 
modeling world. 

 Since buckling behavior is driven by structural deformation, it can be sensitive to geometric 
irregularities and mesh density. 

 Buckling is generally an elastic behavior (geometric instability).   

 

1.2 ANALYST RECOMMENDATIONS 

 Run model through both Eigenvalue buckling and geometric nonlinear buckling analyses.  
Compare results for consistent behavior.  Check to see if material’s elastic limit has been 
exceeded. 

 Tweak geometry: 

o Perturb geometry using Eigenvalue buckling mode shape. 

o Add geometric eccentricities, e.g., offset straight beams by “Length_of_Beam/500”. 

o Use LS-DYNA *PERTURBATION to introduce Monte Carlo random geometric distortion. 

 Investigate mesh convergence given recommendation of five elements per half-sine wave of 
buckled mode.  This is classical mechanics. 

 Determine stress state prior to buckling and assure that the stress is no more than 80% of the 
yield stress of the material.  This step will ensure that your analysis results are relevant for 
linear elastic buckling theory.  

 If the buckling stress exceeds the yield strength of the material, material plasticity must be 
addressed in the analysis procedure. 

 Check for flange crippling.  If many sections exist in your model, create spreadsheet with 
tabulated values of b/t and their respective Fcr values for the load cases used in the model. 

 Mission critical structures subjected to high compressive loads should be carefully analyzed 

using both Eigenvalue and nonlinear geometric analysis.  Additionally, the meshed geometry 

should be “perturbed” in a random manner to ensure all possible buckling modes are captured.  
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2. INTRODUCTION 

This white paper will walk you through the NX Nastran Buckling Analysis techniques and show you how 
to validate your linear buckling analysis with a non-liner static analysis.  Additional examples are 
presented on flange crippling and then finally the application of these techniques to the buckling 
analysis of an eight-passenger, deep-diving luxury submarine. 

 

3. EVERBODYS’ FIRST BUCKLING ANALYSIS MODEL 

3.1 CLASSICAL COLUMN BUCKLING 

Calculating the buckling force for an ideal column is quite simple.  As long as you know the length, 
second moment of inertia and elastic modulus of the beam, you can calculate the force by hand.  
Figure 1 shows the setup for this example. 

 

 

Figure 1:  Schematic of classical column buckling. 
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Figure 2:  Foundation equations for column buckling. 

 

The cross-section properties and equations given above provide all the necessary ingredients to 
calculate the buckling load of the column.  The factor “K” shown above is used to classify the beam’s 
end conditions (Manual of Steel Construction, 8th edition, American Institute of Steel Construction).  
The buckling load depends upon whether the beam’s end points are fixed, pinned or partially 
constrained. 

However the problem with this sophomoric example is that it doesn’t provide enough engineering 
depth to provide a more robust understanding of how the mechanics of buckling works.    

3.2 THE IMPORTANCE OF BUCKLING BOUNDARY CONDITIONS 

Figure 3 shows how the beam, given schematically in Figure 1, is configured in the FEA world.  The 
beam is pinned at both ends.  The vertical degree of freedom is released at the upper constraint.  
Rotation about the vertical axis is prevented at the lower constraint.  An arbitrary load is then applied 
to the upper-most node. 
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Figure 3:  Boundary conditions used on FEA beam model for column buckling. 

 

3.3 ANALYSIS SET DEFINITION FOR BUCKLING 

The analysis setup for linear, eigenvalue buckling is quite simple and additional guidance can be found 
in the NX Nastran User guide.  Figure 4 provides a graphical representation of the important picks for 
this analysis. 

As shown in the analysis set legend (lower left-hand text of the graphical image in Figure 4), the title of 
the Output Set will include a load factor value.  This factor multiplied by the applied load is equal to the 
critical load. 5.751*10,000lbf = 57,510 lbf, correlating to the hand calculation of 57,562 within 0.1%.  
One should note that the Eigenmode deformation is meaningless as is the eigenmode deformation 
magnitude is in a normal modes analysis.  In this case for the column, a unity value of 1.0 is provided 
from the NX Nastran analysis. 

 

 



 

Linear and Nonlinear Buckling White Paper 

w/ Crippling Analysis 
 

 

 

All Rights Reserved 2012   
 

Page:  9 

 

 

Figure 4:  The analysis result is shown on the left for the Eigenmode buckled shape. 

 

3.4 EIGENVALUE BUCKLING THEORY (THE SHORTEST VERSION YOU’LL EVER SEE) 

Since a white paper wouldn’t be complete without some equations, a bit of background is given.  The 
analysis starts with forming the differential stiffness matrix for the structure.  In general FEA, the first 
order stiffness matrix is only used.  This formulation assumes, e.g., that sin(ϴ)= ϴ.  It is a small 
displacement formulation.  The differential stiffness matrix assumes large displacement and takes into 
account “stiffening” or “weakening” effects with the geometry experiences large deformation.  What is 
large deformation?  A simple answer is not easy to give and “rules-of-thumb” often lead to 
embarrassing traps.  The best approach is to use your intuition and explore a bit with simple models.  It 
is somewhat intuitive that as a column is heavy loaded and starts to bow, its load carrying capacity 
becomes greatly compromised.  This is your clue. 
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Mathematically, one can look at the NX Nastran User Guide or any number of mechanics textbooks to 
see the mathematical foundation.  But let’s do a really brief tour to see how the Eigenvalue 
formulation is developed. 

 

 

 

 

 

 

 

 

 

 

Equation 3: The energy equation is differentiated and if set to 0.0 defines a point of static equilibrium 
or maximum load carry capacity since the structure is at its tipping point. 

 

Equation 4:  The prior equation 3 can be rewritten in this other form (don’t ask me how…but I’m sure it 
can be done). 

 

Equation 5:  This substitution shows how the buckling load factor (λ) is used in the analysis against the 
applied load (Pa) used in the analysis.   

Equation 1: The total stiffness of the system is a combination of the linear stiffness [Ka] matrix and the 
differential stiffness matrix [Kd]. 

Equation 2:  The energy of the system can be written above.  This is a standard FEA approach since 
once you have the energy equation, it can be differentiated to arrive at an equilibrium point. 
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Equation 6:  At this point we have the Eigenvalue equation which can be readily solved for its roots and 
its mode shapes.  Since a buckling analysis is typically only concerned with the first sign of collapse, the 
analysis stops at the first mode. 

3.5 INTERPRETATION OF EIGENVALUE BUCKLING RESULTS 

Figure 5 and Figure 6 show the two output sets generated from the analysis run.  The first set (Figure 5) 
is the linear static result of the applied load.  The second set (Figure 6) is the Eigenvalue buckling result 
and provides the λ load factor as given in Equation 5:  This substitution shows how the buckling load 
factor (λ) is used in the analysis against the applied load (Pa) used in the analysis. 

 

 

Figure 5:  The Eigenvalue buckling approach returns two output sets.  The first output set is NX Nastran 
Case 1 is a linear analysis. 
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Figure 6: The first Eigenmode is shown deflected with a λ = 5.751.  

 

The peak deflection is meaningless and is given at a unit value of 1.0.  Likewise the stresses generated 
from the Eigenmode analysis are not significant.  It should be noted, as with the equations given in the 
prior section, only the critical load is predicted.   

This limitation with the Eigenvalue buckling approach indicates the often time requirement for a more 
thorough investigation. 
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4. GEOMETRIC NONLINEAR ANALYSIS OF SIMPLE COLUMN 

A geometric nonlinear solution, as the name implies, only looks at the effects of large deformation on 
the FEA model and ignores all material nonlinearities.  The general approach is that the regular and 
differential stiffness matrices are generated and the solution is solved in an incremental approach.  
That is, as load is applied and the structure deforms, the stiffness matrix is reformed to account for the 
deformation within individual elements.  This is a robust approach and captures all of the relevant 
physics of the buckling approach except for that of material instability.  However, we’ll show how to 
address material nonlinearity within a geometry buckling analysis and determine whether the analysis 
must include this extra nonlinearity or not. 

4.1 GEOMETRIC NONLINEAR BUCKLING ANALYSIS SETUP 

Femap provides a simple way to setup up a NX Nastran nonlinear analysis.  Figure 7 shows the major 
cards.  The analysis is told to solve within 10 time steps.  In NX Nastran format, time equals 1.0 is the 
maximum applied load.  The analysis is shown to diverge at a time step of 0.5755 and would translate 
into a total applied load of 57,550 lbf.  This result correlates well with the Eigenvalue buckling result of 
57,510 lbf. 

 

 

Figure 7:  The same column model is leveraged with a change of analysis setup. 
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If this analysis is refined a bit by turning on the Arc-Length method (non-standard in the nonlinear 
setup), one can see how the column would behave as it snaps through.  These results are shown in 
Figure 8. 

 

 

Figure 8:  The vertical deflection is plotted as a function of load.  The close-up view shows the results 
from the Arc-Length analysis method. 

 

4.2 ADDITIONAL EXAMPLES OF GEOMETRIC NONLINEAR BUCKLING 

The NX Nastran Handbook of Nonlinear Analysis provides an interesting reference to a more complex 
buckling analysis along with some experimental results.  This example is shown in Figure 9. 
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Figure 9:  Example of complex nonlinear geometric buckling from the NX Nastran Nonlinear Handbook. 
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5. ADVANCED EIGENVALUE AND NONLINEAR BUCKLING 

A more advanced example of linear and nonlinear buckling is provided here.  A simple thin walled 
aluminum cylinder (i.e. beer can) is modeled with plate elements.  The load case is an equally 
distributed axial force.  The beer can is carefully constrained to avoid end effects. 

The reason why this example was chosen is that it presents several nice buckling modeling challenges 
and good examples such as these are very difficult to find.  Which leads to the phrase: “Elegant 
simplicity is deceptively difficult to achieve.” 

5.1 EIGENVALUE AND GEOMETRIC NONLINEAR BEER CAN BUCKLING 

Figure 10 shows our starting point for this analysis work.  The end conditions were defined to mimic a 
perfect cylinder sitting on top of a perfectly frictionless counter top.  A perfectly aligned axial load was 
applied to the top edge of the cylinder of 1,000 lbf. 

 

 

Figure 10:  The buckling FEA model is shown above.  The buckled mode is very sensitive to end 
conditions. 
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With a perfect cylinder, the Eigenvalue buckling solution indicates that the cylinder should buckle at a 
load of 73 lbf (0.073*1,000 lbf).  The nonlinear solution just compresses the cylinder.  In the perfect 
numerical world, this makes perfect sense.  

 

 

 

Figure 11:  The Eigenvalue solution is shown on the left and that for the geometric nonlinear solution 
on the right. 

 

5.2 PERTURBATION OF PERFECT GEOMETRY WITH EIGENMODE SHAPE 

A common trick to initiate buckling in perfect geometry (i.e., perfect mesh), is to take the buckled 
mode shape and map it onto the mesh.  This process is shown schematically in Figure 12.  This can be 
done using a Femap API within the Custom Tools > PostProcessing > Nodes Move By Deform with 
Options.  We have scaled the mode shape by 0.001.  The concept is that you just want to perturb the 
perfect geometry ever so slightly such that it will correctly start to buckle.  It should be noted that the 
two solutions correlate within 2%. 
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Figure 12:  The Eigenmode deformation is scaled by 0.001 and used to update the nodal positions.  A 
geometric nonlinear analysis is then performed and shown to correlate within 2%. 

5.3 BOUNDARY CONDITION SENSITIVITY IN BUCKLING ANALYSIS 

If we adjust the constraints to restrict horizontal movement on the top edge and to pin the bottom 
edge, the buckling force increases to around 200 lbf.  This result is shown in Figure 13.  These 
constraints simulate a real beer can a bit more closely since the pinned conditions simulated the top 
and bottom lids of the beer can.  At first glance, the 200 lbf buckling load limit seems reasonable for 
our idealized beer can. 
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Figure 13:  If the end conditions are pinned (think beer can lid), the buckled shape changes. 

 

5.4 BUCKLING ANALYSIS MESH SENSITIVITY 

There is only one problem with the prior analysis, it is wrong.  How do we know it is wrong?  In the NX 
Nastran User’s Guide (User.pdf), Chapter 22.4 Linear Buckling Assumptions and Limitations:  “A 
minimum of five grid points per half sine wave (buckled shape) is recommended.”  In the prior model it 
seems to fit this description but what this recommendation is really saying is that buckling behavior 
can be mesh sensitive and if you are unsure of the result, one should perform a convergence study.  In 
Figure 14, a re-meshed model is shown and the calculated Eigenvalue drops to 0.165.  This yields a 
buckling load of 165 lbf.  When compared to the prior, coarser mesh model, the difference is almost 
20%. 

 



 

Linear and Nonlinear Buckling White Paper 

w/ Crippling Analysis 
 

 

 

All Rights Reserved 2012   
 

Page:  20 

 

 

Figure 14:  When the cylinder is re-meshed, a new buckled mode shape appears and the buckled load 
drops by 20% as compared to the more coarsely meshed cylinder shown in Figure 13. 

 

This result was then confirmed using an analytical solution and is shown in Figure 15. 

 

Figure 15:  Analytical solution for cylinder with pinned ends.   
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5.5 NONLINEAR MATERIAL ASSESSMENT IN BUCKLING ANALYSIS 

A nonlinear analysis provides the buckling stress at the point of collapse.  The utility of the 
geometrically nonlinear approach is that one can gain insight into the structure prior to its buckled 
condition.  The image on the left shows the can with a load of 159 lbf while the image on the right 
shows the buckled condition is at 162 lbf.  In this example, if the yield stress of the material was higher 
than 14,000 psi, it would indicate that the buckling instability was independent of any material 
nonlinearity.  This is a very useful observation and allows the analyst to confidently move forward with 
their design without any side worries about the possibility of plastic collapse.  

 

 

Figure 16:  As the buckling instability load is approached, a geometric nonlinear analysis will indicate 
the on-set of instability by a notable jump in the stresses.  Note: Deflections shown above have been 
scaled by 100x.  The actual deflection prior to buckling instability is imperceptible.  

 

Another example uses LS-DYNA as the solver.  The model setup is shown in Figure 17 and is directly 
analyzed with LS-DYNA from the Femap environment.  In this solution sequence, the aluminum 
cylinder is given a yield stress of 40,000 psi. 
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Figure 17:  LS-DYNA model within Femap.  All analysis parameters were set within Femap. 
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Figure 18:  LS-DYNA analysis results indicate good agreement with the NX Nastran results where 
material nonlinearity was not considered. 
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Figure 19:  The above plot shows that the cylinder buckles at around 0.0165 or 165 lbf (the LS-DYNA 
analysis applies full load at 0.1 second).  The three elements are located equidistant along the vertical 
length of the cylinder.  

 

Figure 19 shows that the buckling behavior of the cylinder is completely independent of any material 
nonlinearity since its behavior is linear up to the point of its collapse.   

The completely nonlinear analysis procedure is shown in Figure 20 as the beer can is allowed to 
completely collapse. 
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Figure 20:  This sequence of images shows how buckling progresses in a completely nonlinear analysis. 

 

5.6 MONTE CARLO GEOMETRIC PERTURBATION 

In this example, the nodes of the can were tweaked, or perturbed, to create a completely random 
surface.  This operation was done within LS-DYNA and allows one to specify a completely random 
displacement of the nodes.  Results shown in Figure 21 indicate that the can would buckle right around 
97 lbf.   

 

 

Figure 21:  With the beer can slightly perturbed, the buckling load drops by 40% 



 

Linear and Nonlinear Buckling White Paper 

w/ Crippling Analysis 
 

 

 

All Rights Reserved 2012   
 

Page:  26 

 

In the first image, on the far left in Figure 21, very small ripples can be seen in the beer can.  These 
small ripples represent the very small perturbation of the can’s original geometry.  With only these 
slight modifications, the buckling load changed significantly.  This result indicates that even given a 
theoretical calculation of 164 lbf, a more engineering appropriate buckling load would be 95 lbf given 
the possibility of very real manufacturing defects in the structure.  This lower load also is a bit more 
realistic given that many of us have most likely tried to stand on a beer can at one time or another and 
noted the difficulty of getting the can to support our weight. 

5.7 ANALYST COMMENTARY ON THE BUCKLING OF VERY THIN STRUCTURES 

It should be mentioned that this example is a bit forced.  That is, the reason that the beer can is so 
extremely sensitive to perturbation is that the wall of the can is very thin at 0.002”.  Hence, it provides 
a very stark example about the sensitivities of boundary conditions, mesh and perturbation.  One can 
imagine that in more typical engineering structures there isn’t quite as much of drama. 

 

6. FLANGE CRIPPLING 

6.1 INTRODUCTION TO CRIPPLING AND BASIC MECHANICS 

Flange crippling is something that is often encountered in the design of highly loaded aerospace 
structures where paper-thin flange sections are the standard.  Crippling is a localized buckling 
mechanism that is driven by high compressive loads.  Figure 22 provides some background on the 
crippling mechanism.  As Figure 22 shows on the far left, the main portion of the extruded section 
might be stable but its collapse or global buckling is initiated by a localized buckle at its weakest point.  
These types of structures are outside the realm of hand calculations; however experimentally derived 
charts exist  that allow the designer to make safe design choices about section thicknesses.  One 
designer suggestion is that, if it is not detrimental to the overall design, one can just specify that all 
flange sections have a b/t < 5 and then be free of any crippling consideration. 

Figure 23 a simple example is presented that illustrates the challenge of making a direct and easy 
crippling prediction.  From a linear stress analysis perspective, the beam is well designed to handle the 
applied load with a maximum von Mises stress of 22,000 psi.  This linear elastic stress is well below the 
yield stress of the material at 38,000 psi (2024-T3 from Figure 22). 

The Free-Body-Diagram (FBD) in Figure 24 shows a resolved force of 3,000 lbf across the top of the 
flange.  The Fcr is calculated as 3,000 lbf / (4”*0.0333”) = 22,500 psi given a flange width edge-to-edge 
of 4” and the flange thickness is 0.033”.  If we take the Eigenvalue buckling critical load factor of 
0.17x22,500 psi, the resulting Eigen-Fcr = 3,800 psi.   

To see if this numerical buckling value is relevant, one can use Figure 22 to calculate the Fcr for the I-
beam.  For the section of interest, the t/b ratio is 60 and for 2024-T3 with a yield stress of 38,000 psi, 
curve 1 would estimate a Chart-Fcr = 10,000 psi.   
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Unfortunately, we are not even close with the Eigenvalue buckling solution (Eigen-Fcr = 3,800 versus 
Chart-Fcr = 10,000 psi) and although it is conservative we could be adding significant weight to the 
structure that would be completely underutilized.     

 

 

 

 

Figure 22:  An experimental chart from M. Niu, Airframe Stress Analysis and Sizing, 2nd Ed., can be used 
to determine the crippling load pressure (Fcr) of a flange section.  The crippling load is the average 
compressive stress across the flange. 
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Figure 23:  A simple supported beam is given an evenly distributed load across its top flange.  The yield 
stress of the material is 38,000 psi (2024-T3 from Figure 22).  A static analysis shows no problems but a 
buckling analysis indicates it would fail at 0.17x of the applied load. 

 

6.2 GEOMETRIC NONLINEAR ANALYSIS FOR CRIPPLING ANALYSIS 

 

Figure 24:  A simply supported I-Beam structure is shown above at its crippling load point. 
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The free-body-diagram in Figure 24 shows a resolved force of 1564 lbf across the top of the flange.  
The Nonlinear Geometric-Fcr is calculated as 1564 lbf / (4”*0.0333”) = 11,700 psi.   

The difference between Chart-Fcr = 10,000 psi and Nonlinear Geometric-Fcr = 11,700 psi is within the 
expected limits between experimental and numerical results for nonlinear behavior.  As such, the 
difference of 17% is not overly worrisome. 

6.3 ANALYST COMMENTARY ON CRIPPLING 

Crippling analysis is nothing special in the world of mechanics; it is just a localized buckling 
phenomenon.  What makes it a topic of concern for many aerospace analysts is that it can be easily 
overlooked since it is not a global buckling mechanism.  A checklist for crippling might look like this: 

 Perform overall check on all flanges and webs to see if their b/t values are greater than 5. 

 For flanges/webs with a b/t greater than 5, determine the Pcr. 

 Check Pcr values against experimentally tabulated values (e.g., see Figure 22). 

 For regions close to the design limit, perform geometric nonlinear analysis to further define 
crippling behavior. 

   

7. BUCKLING ANALYSIS OF DEEP-DIVING, EIGHT PASSENGER SUBMARINE 

Perhaps the most important analysis requirement of a submarine is the determination of the buckling 
load for the structure.  Since underwater craft are subjected to near perfectly hydrostatic pressure 
loading, buckling will often occur prior to any other type of structural failure.   

The following example presents some results from a deep-diving, eight passenger submarine.  
Additional details on this submarine can be found at www.PredictiveEngineering.com. 

7.1 SUBMARINE MODEL AND EIGENVALUE BUCKLING ANALYSIS 

Figure 25 shows the pressure hull of the submarine.  The hull and battery pods and other general 
flanges and supports were meshed with plate elements.  The main hatches were meshed with brick 
elements.  The pressure load is then applied over all wetted surfaces with load adjustments made to 
account for the hatches and viewports.  When correctly adjusted, the net force is 0.0 over the 
complete structure. 

Figure 26 shows the Eigenvalue buckling prediction of 2.6x.  The Eigenmode seems quite reasonable 
but given the sensitivity of this work, a complete nonlinear analysis is performed. 
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Figure 25:  Deep-diving, eight passenger luxury submarine.  The FEA work was validated against strain 
gauged data.  The full report on this work can be seen at www.PredictiveEngineering.com.   

 

http://www.predictiveengineering.com/
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Figure 26:  The NX Nastran Eigenvalue buckling analysis predicts a buckling factor of 2.6x. 

 

7.2 NONLINEAR BUCKLING ANALYSIS OF SUBMARINE 

The full nonlinear results shown in Figure 27 indicate that the onset of buckling is near 2.75x of the 
applied load.  This is somewhat close to the Eigenvalue results at 2.6x.   

It is interesting to note that the full nonlinear model indicates an early buckling onset (Figure 28) of the 
main hatch at a load factor closer to 2.5x.  What is perhaps more important is that the results are 
nicely bracketed and one can have a high confidence that the buckling behavior has been captured.  
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Figure 27:  Submarine hull undergoing buckling.  The hull starts to buckle at a load factor of 2.7x. 
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Figure 28:  Plastic strain around the main hatch indicates the start of buckling collapse at 2.5x load 
factor. 

  



 

Linear and Nonlinear Buckling White Paper 

w/ Crippling Analysis 
 

 

 

All Rights Reserved 2012   
 

Page:  34 

 

8. WHAT WE DO AT PREDICTIVE ENGINEERING 

 

We are a small, specialized engineering software 
consultancy that dedicates itself to providing the 
best possible engineering service to our clients. 

Our work process is defined by listening to our 
clients and being honest brokers about our abilities, 
schedules and engineering software that we 
represent.   

During our sixteen years of business, every client 
can be considered a reference client.  Equally 
important, we have successful completed over 800+ 
projects with not one analysis failure.  In the 
briefest possible terms, let us say that we stand by 
our work and take each project very seriously. 

If you would like to talk to us about your next 
analysis project or look into buying Femap, NX 
Nastran of LS-DYNA, please give us a call. 

Sincerely, 

Predictive Engineering, Inc. 

503 | 206 | 5571 
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